THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2040A/B (First Term, 2020-21) Linear Algebra II Solution to Homework 10

Sec. 6.3

Q3(b). For each of the following inner product spaces V and linear operators T on V, evaluate T^* at the given vector in V.

$$V = C^2$$
, $T(z_1, z_2) = (2z_1 + iz_2, (1 - i)z_1)$, $x = (3 - i, 1 + 2i)$

Sol. Solution: Denote $\beta = \{(1,0), (0,1)\}$ as the standard ordered basis for V under field $F = \mathbb{C}$. Then

$$[T]_{\beta} = \left(\begin{array}{cc} [T(1,0)]_{\beta} & [T(0,1)]_{\beta} \end{array} \right) = \left(\begin{array}{cc} 2 & i \\ 1-i & 0 \end{array} \right) \quad \Rightarrow \quad [T^*]_{\beta} = ([T]_{\beta})^* = \left(\begin{array}{cc} 2 & 1+i \\ -i & 0 \end{array} \right)$$

It follows that

$$[T^*(x)]_{\beta} = [T^*]_{\beta} [x]_{\beta} = \begin{pmatrix} 2 & 1+i \\ -i & 0 \end{pmatrix} \begin{pmatrix} 3-i \\ 1+2i \end{pmatrix} = \begin{pmatrix} 5+i \\ -1-3i \end{pmatrix}$$

Therefore, $T^*(x) = (5 + i, -1 - 3i)$

Q3(c).
$$V = P_1(\mathbb{R})$$
 with $\langle f, g \rangle = \int_{-1}^{1} f(t)g(t)dt$, $T(f) = f' + 3f$. $f(t) = 4 - 2t$.

Sol. Let $\beta = \{1, t\}$ be the standard basis of V. Write $T^*(4 - 2t) = a + bt$ for some $a, b \in \mathbb{R}$. Then for any $g(t) = c + dt \in V$ with $c, d \in \mathbb{R}$, we have T(g(t)) = d + 3c + 3dt and

$$\langle d+3c+3dt, 4-2t\rangle = \langle T(g(t), 4-2t\rangle = \langle g(t), T^*(4-2t)\rangle = \langle c+dt, a+bt\rangle.$$

Now $\langle d + 3c + 3dt, 4 - 2t \rangle = 2(4)(d + 3c) + (3d)(-2)\frac{2}{3} = 4d + 24c$ and $\langle c + dt, a + bt \rangle = 2ac + \frac{2}{3}bd$. Since c, d are arbitrary, the coefficients of them on both sides of the equation must equal respectively. Therefore 24 = 2a and $\frac{2}{3}b = 4$. Hence a = 12 and b = 6. So $T^*(4-2t) = 12 + 6t$.

Q6. Let T be a linear operator on an inner product space V. Let $U_1 = T + T^*$ and $U_2 = TT^*$. Prove that $U_1 = U_1^*$ and $U_2 = U_2^*$.

Sol.

$$U_1^* = (T + T^*)^* = T^* + (T^*)^* = T^* + T = U_1$$
$$U_2^* = (TT^*)^* = (T^*)^* T^* = TT^* = U_2.$$

Q8. Let V be a finite-dimensional inner product space, and let T be a linear operator on V. Prove that if T is invertible, then T^* is invertible and $(T^*)^{-1} = (T^{-1})^*$.

Sol. Suppose $x \in N(T^*)$. Then

$$0 = \left\langle T^{-1}(x), T^*(x) \right\rangle = \left\langle TT^{-1}(x), x \right\rangle = \left\langle x, x \right\rangle$$

Hence $x = \overrightarrow{0}$ and thus T^* is an injective linear operator on V. So T^* is invertible by finiteness of dimension of V. Also we have

$$\langle x, (T^{-1})^*(y) \rangle = \langle T^{-1}(x), T^*(T^*)^{-1}(y) \rangle = \langle TT^{-1}(x), (T^*)^{-1}(y) \rangle = \langle x, (T^*)^{-1}(y) \rangle$$

for all $x, y \in V$. Therefore $(T^*)^{-1} = (T^{-1})^*$.

- Q9. Prove that if $V = W \oplus W^{\perp}$ and T is the projection on W along W^{\perp} , then $T = T^*$. Hint: Recall that $N(T) = W^{\perp}$. (For definitions, see the exercises of Sections 1.3 and 2.1.)
- Sol. From the assumption $V = W \oplus W^{\perp}$, for all $v, w \in V$, there exist unique $v_1, w_1 \in W$ and $v_2, w_2 \in W^{\perp}$ such that $v = v_1 + v_2$ and $w = w_1 + w_2$. We check that

$$\langle T(v), w \rangle = \langle v_1, w_1 + w_2 \rangle = \langle v_1, w_1 \rangle + \langle v_1, w_2 \rangle = \langle v_1, w_1 \rangle$$

and so

$$\langle v, T(w) \rangle = \overline{\langle T(w), v \rangle} = \overline{\langle w_1, v_1 \rangle} = \langle v_1, w_1 \rangle = \langle T(v), w \rangle$$

Therefore T^* exists and $T = T^*$.

- Q13. Let T be a linear operator on a finite-dimensional inner product space V. Prove the following results.
 - (a) $N(T^*T) = N(T)$. Deduce that $rank(T^*T) = rank(T)$.
 - (b) $\operatorname{rank}(T) = \operatorname{rank}(T^*)$. Deduce from (a) that $\operatorname{rank}(TT^*) = \operatorname{rank}(T)$.
 - (c) For any $n \times n$ matrix A. rank $(A^*A) = \operatorname{rank}(AA^*) = \operatorname{rank}(A)$.
- Sol. (a) It is clear that $\mathsf{N}(T) \subset \mathsf{N}(T^*T)$. Let $x \in \mathsf{N}(T^*T)$. Then $\langle T(x), T(x) \rangle = \langle x, T^*T(x) \rangle = \langle x, \overline{0} \rangle = 0$. Hence $T(x) = \overline{0}$ and $x \in \mathsf{N}(T)$. It follows that

$$\operatorname{rank}(T^*T) = n - \operatorname{nullity}(T^*T) = n - \operatorname{nullity}(T) = \operatorname{rank}(T)$$

where $n = \dim(V)$.

(b) By Q12(b), $\mathsf{R}(T^*) = \mathsf{N}(T)^{\perp}$. Since $V = \mathsf{N}(T) \oplus \mathsf{N}(T)^{\perp}$ by Sec 6.2 Q13(d), we have $n = \operatorname{nullity}(T) + \dim(\mathsf{N}(T)^{\perp})$ and

$$\operatorname{rank}(T^*) = \operatorname{dim}(\mathsf{N}(T)^{\perp}) = n - \operatorname{nullity}(T) = \operatorname{rank}(T).$$

- (c) Note that $L_A^* = L_{A^*}$. Hence by applying part (a) and (b) with $T = L_A$, we have $\operatorname{rank}(A^*A) = \operatorname{rank}(L_{A^*}L_A) = \operatorname{rank}(L_A^*L_A) = \operatorname{rank}(L_A) = \operatorname{rank}(A)$. Similarly, $\operatorname{rank}(AA^*) = \operatorname{rank}(A)$.
- Q14. Let V be an inner product space, and let $y, z \in V$. Define $T : V \to V$ by $T(x) = \langle x, y \rangle z$ for all $x \in V$. First prove that T is linear. Then show that T^* exists, and find an explicit expression for it.

Sol. For all $x, w \in V$, we have

$$\langle T(x), w \rangle = \langle \langle x, y \rangle \, z, w \rangle = \langle x, y \rangle \, \langle z, w \rangle = \left\langle x, \overline{\langle z, w \rangle} y \right\rangle = \langle x, \langle w, z \rangle \, y \rangle \, .$$

Note that $w \mapsto \langle w, z \rangle y$ is a linear operator on V since

$$\langle w_1 + cw_2, z \rangle y = (\langle w_1, z \rangle + c \langle w_2, z \rangle)y = \langle w_1, z \rangle y + c \langle w_2, z \rangle y$$

for all $w_1, w_2 \in V$ and scalar c. Therefore this gives the adjoint of T.

Sec. 6.4

- 2. For each linear operator T on an inner product space V, determine whether T is normal, self-adjoint, or neither. If possible, produce an orthonormal basis of eigenvectors of T for V and list the corresponding eigenvalues.
- (c). $V = \mathbb{C}^2$ and T is defined by T(a, b) = (2a + ib, a + 2b)
- Sol. Take $\beta = \{(1,0), (0,1)\}$ as the ordered basis for V. Then

$$[T]_{\beta} = \begin{pmatrix} 2 & i \\ 1 & 2 \end{pmatrix} \quad \Rightarrow \quad [T^*]_{\beta} = ([T]_{\beta})^* = \begin{pmatrix} 2 & 1 \\ -i & 2 \end{pmatrix}$$

Therefore, we have

$$[T^*T]_{\beta} = [T^*]_{\beta} [T]_{\beta} = \begin{pmatrix} 2 & 1 \\ -i & 2 \end{pmatrix} \begin{pmatrix} 2 & i \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 5 & 2+2i \\ 2-2i & 5 \end{pmatrix}$$

and also

$$[TT^*]_{\beta} = [T]_{\beta} [T^*]_{\beta} = \begin{pmatrix} 2 & i \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -i & 2 \end{pmatrix} = \begin{pmatrix} 5 & 2+2i \\ 2-2i & 5 \end{pmatrix} = [T^*T]_{\beta}$$

As the matrix representation map is an isomorphism, we have $T^*T = TT^*$, i.e. T is normal. Also, as $[T]_{\beta} \neq [T^*]_{\beta}$, $T \neq T^*$ and hence T is not self-adjoint operator. We then solve for the eigenvalue of T Consider $f_T(t) = \det([T]_{\beta} - \lambda I_2) = \det\begin{pmatrix} 2-\lambda & i\\ 1 & 2-\lambda \end{pmatrix} = (\lambda - 2)^2 - i = 0$. Solving $\lambda - 2 = \sqrt{i} = \pm \frac{\sqrt{2}}{2}(1+i)$. Then we have the eigenvalue given by $\lambda_1 = 2 + \frac{\sqrt{2}}{2}(1+i)$ and $\lambda_2 = 2 - \frac{\sqrt{2}}{2}(1+i)$

For $\lambda_1 = 2 + \frac{\sqrt{2}}{2}(1+i)$, consider

$$E_{\lambda_1} = N\left(T - \lambda_1 I_2\right) = N\left(\begin{array}{cc} 2 - \frac{\sqrt{2}}{2}(1+i) & i\\ 1 & 2 - \frac{\sqrt{2}}{2}(1+i) \end{array}\right) = \left\{t\left(\begin{array}{c} \frac{\sqrt{2}}{2} \\ \frac{1}{2}(1-i) \end{array}\right) : t \in \mathbb{C}\right\}$$

Obviously we have $\left\| \left(\frac{\sqrt{2}}{2}, \frac{1}{2}(1-i) \right) \right\| = 1$

For $\lambda_2 = 2 - \frac{\sqrt{2}}{2}(1+i)$. consider

$$E_{\lambda_2} = N\left(T - \lambda_2 I_2\right) = N\left(\begin{array}{cc} 2 + \frac{\sqrt{2}}{2}(1+i) & i\\ 1 & 2 + \frac{\sqrt{2}}{2}(1+i) \end{array}\right) = \left\{t\left(\begin{array}{c} -\frac{1}{2}(1+i) \\ \frac{\sqrt{2}}{2} \end{array}\right) : t \in \mathbb{C}\right\}$$

Obviously we have $\left\| \left(-\frac{1}{2}(1+i), \frac{\sqrt{2}}{2} \right) \right\| = 1$ Therefore, we can take the orthonormal basis of eigenvectors of T for V can be taken as

$$\left\{ \left(\begin{array}{c} \frac{\sqrt{2}}{2} \\ \frac{1}{2}(1-i) \end{array}\right), \left(\begin{array}{c} -\frac{1}{2}(1+i) \\ \frac{\sqrt{2}}{2} \end{array}\right) \right\}$$

(d). $V = P_2(\mathbb{R})$ and T is defined by T(f) = f', where

$$\langle f,g \rangle = \int_0^1 f(t)g(t)dt$$

Sol. Solution: Take $\alpha = \{1, x, x^2\}$ as the orthogonal basis for V and hence we can apply G-S process to obtain the ordered orthonormal basis for $V, \beta = \{1, 2\sqrt{3}(t-1/2), 6\sqrt{5}(t^2-t+1/6)\}$ Check by definition we can obtain

$$[T]_{\beta} = \begin{pmatrix} 0 & 2\sqrt{3} & 0 \\ 0 & 0 & 2\sqrt{15} \\ 0 & 0 & 0 \end{pmatrix} \quad \Rightarrow \quad [T^*]_{\beta} = ([T_{\beta}])^* = \begin{pmatrix} 0 & 0 & 0 \\ 2\sqrt{3} & 0 & 0 \\ 0 & 2\sqrt{15} & 0 \end{pmatrix} \neq [T]_{\beta}$$

Therefore, T is not an adjoint linear operator. Also, we have

$$[TT^*]_{\beta} = [T]_{\beta} [T^*]_{\beta} = \begin{pmatrix} 0 & 2\sqrt{3} & 0 \\ 0 & 0 & 2\sqrt{15} \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 2\sqrt{3} & 0 & 0 \\ 0 & 2\sqrt{15} & 0 \end{pmatrix} = \begin{pmatrix} 12 & 0 & 0 \\ 0 & 60 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

and

$$[T^*T]_{\beta} = [T^*]_{\beta} [T]_{\beta} = \begin{pmatrix} 0 & 0 & 0 \\ 2\sqrt{3} & 0 & 0 \\ 0 & 2\sqrt{15} & 0 \end{pmatrix} \begin{pmatrix} 0 & 2\sqrt{3} & 0 \\ 0 & 0 & 2\sqrt{15} \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 12 & 0 \\ 0 & 0 & 60 \end{pmatrix} \neq [T^*T]_{\beta}$$

Therefore, $T^*T \neq TT^*$ and hence T is not normal operator. So, there exist no orthonormal basis of eigenvectors of T for V.

6. Q: Let V be a complex inner product space, and let T be a linear operator on V. Define

$$T_1 = \frac{1}{2} (T + T^*)$$
 and $T_2 = \frac{1}{2i} (T - T^*)$

- (a) Prove that T_1 and T_2 are self-adjoint and that $T = T_1 + iT_2$.
- (b) Suppose also that $T = U_1 + iU_2$, where U_1 and U_2 are self-adjoint. Prove that $U_1 = T_1$ and $U_2 = T_2$
- (c) Prove that T is normal if and only if $T_1T_2 = T_2T_1$.

Sol: (a) We have

$$T_1^* = \left(\frac{1}{2}\left(T+T^*\right)\right)^* = \left(\frac{1}{2}\right)^* \left(T^* + \left(T^*\right)^*\right) = \frac{1}{2}\left(T^* + T\right) = \frac{1}{2}\left(T+T^*\right) = T_1$$

 T_1 is self-adjoint. Also, we have

$$T_2^* = \left(\frac{1}{2i}(T - T^*)\right)^* = \left(-\frac{i}{2}(T - T^*)\right)^* = \frac{i}{2}(T - T^*)^*$$
$$= \frac{i}{2}(T^* - T) = \frac{i^2}{2i}(T^* - T) = \frac{1}{2i}(T - T^*) = T_2$$

so T_2 is also self-adjoint. It is clear that

$$T_1 + iT_2 = \frac{1}{2} \left(T + T^* \right) + i \left[\frac{1}{2i} \left(T - T^* \right) \right] = \frac{1}{2} \left(T + T^* \right) + \frac{1}{2} \left(T - T^* \right) = T$$

(b) From assumption, we have $T = T_1 + iT_2 = U_1 + iU_2$ and hence

$$(T_1 - U_1) + i(T_2 - U_2) = 0 (1)$$

As T_1, T_2, U_1, U_2 are self-adjoint, takeing adjoint operator on both sides

$$(T_1 - U_1) - i(T_2 - U_2) = (T_1^* - U_1^*) - i(T_2^* - U_2^*) = ((T_1 - U_1) + i(T_2 - U_2))^* = 0 (2)$$

Adding (1) and (2) to use

$$2\left(T_1 - U_1\right) = 0 \Rightarrow T_1 = U_1$$

Consider $(1) - (2) : 2i(T_2 - U_2) = 0$ yields $T_2 = U_2$. The proof is completed.

(c) (\Rightarrow) Suppose T is normal, then

$$T_1^2 + iT_1T_2 - iT_2T_2 + T_2^2 = (T_1 - iT_2)(T_1 + iT_2) = (T_1 + iT_2)^*(T_1 + iT_2)$$

= $T^*T = TT^* = (T_1 + iT_2)(T_1 + iT_2)^* = (T_1 + iT_2)(T_1 - iT_2)$
= $T_1^2 - iT_1T_2 + iT_2T_1 + T_2^2$

By swapping the terms in the equality above yields $2iT_1T_2 = 2iT_2T_1$ and hence $T_1T_2 = T_2T_1$.

 (\Leftarrow) Suppose $T_1T_2 = T_2T_1$, we have

$$T^*T = (T_1 + iT_2)^* (T_1 + iT_2) = (T_1 - iT_2) (T_1 + iT_2) = T_1^2 + T_2^2 + iT_1T_2 - iT_2T_1$$

= $T_1^2 + T_2^2 + iT_2T_1 - iT_1T_2 = (T_1 + iT_2) (T_1 - iT_2) = (T_1 + iT_2) (T_1 + iT_2)^* = TT^*$

Hence T is normal operator.

- 7. Q: Let T be a linear operator on an inner product space V, and let W be a T-invariant subspace of V. Prove the following results.
 - (a) If T is self-adjoint, then T_W is self-adjoint.
 - (b) W^{\perp} is T^* -invariant.
 - (c) If W is both T- and T*-invariant, then $(T_W)^* = (T^*)_W$.

- (d) If W is both T- and T^{*}-invariant and T is normal, then T_W is normal.
- Sol: (a) $\forall u, v \in W$, since T is self-adjoint,

$$\langle T_W(u), v \rangle = \langle T(u), v \rangle = \langle u, T(v) \rangle = \langle u, T_W(v) \rangle,$$

whence T_W is self-adjoint.

(b) Fix $w' \in W^{\perp}$ and $w \in W$. As W is T-invariant, $T(w) \in W$. Then

$$\langle w, T^*(w') \rangle = \langle T(w), w' \rangle = 0.$$

Therefore, $T^*(w) \in W^{\perp}$. W^{\perp} is T^* -invariant.

(c) Fix $w \in W$. We claim that $(T_W)^*(w) = (T^*)_W(w)$. If suffices to show that $\forall w' \in W$, $\langle w', (T_W)^*(w) \rangle = \langle w', (T^*)_W(w) \rangle$. Indeed, $\forall w' \in W$,

$$\langle w', (T_W)^*(w) \rangle = \langle T_W(w'), w \rangle = \langle T(w'), w \rangle = \langle w', T^*(w) \rangle = \langle w', (T^*)_W(w) \rangle.$$

Therefore, $(T_W)^* = (T^*)_W$.

- (d) We have $T_W(T_W)^* = T_W(T^*)_W = (TT^*)_W = (T^*T)_W = (T^*)_W T_W = (T_W)^* T_W$. Therefore, T_W is normal.
- 9. Q: Let T be a normal operator on a finite-dimensional inner product space V. Prove that $N(T) = N(T^*)$ and $R(T) = R(T^*)$.
 - Sol: Fix $v \in \mathsf{N}(T)$. If $v = \vec{0}$, then clearly $v \in \mathsf{N}(T^*)$. If $v \neq \vec{0}$, then v is an eigenvector of T corresponding to eigenvalue 0 and by Theorem 6.15, v is also an eigenvector of T^* corresponding to eigenvalue $\overline{0} = 0$, implying that $v \in \mathsf{N}(T^*)$. We have $\mathsf{N}(T) \subset \mathsf{N}(T^*)$. Note that T^* is also normal. Applying the above argument on T^* yields $\mathsf{N}(T^*) \subset \mathsf{N}((T^*)^*) = \mathsf{N}(T)$. Hence, $\mathsf{N}(T) = \mathsf{N}(T^*)$. By Exercise 12 in Sec. 6.3, $\mathsf{R}(T^*) = \mathsf{N}(T)^{\perp} = \mathsf{N}(T^*)^{\perp} = \mathsf{R}((T^*)^*) = \mathsf{R}(T)$.
- 11. Q: Assume that T is a linear operator on a complex (not necessarily finite-dimensional) inner product space V with an adjoint T^* . Prove the following results.
 - (a) If T is self-adjoint, then $\langle T(x), x \rangle$ is real for all $x \in V$.
 - (b) If T satisfies $\langle T(x), x \rangle = 0$ for all $x \in V$, then $T = T_0$. Hint: Replace x by x + y and then by x + iy and expand the resulting inner products.
 - (c) If $\langle T(x), x \rangle$ is real for all $x \in V$, then $T = T^*$
- Sol: (a) As T is self-adjoint, i.e.

$$\langle T(x), x \rangle = \langle x, T^*(x) \rangle = \overline{\langle T^*(x), x \rangle} = \overline{\langle T(x), x \rangle}$$

Therefore, we have

$$\langle T(x), x \rangle = \frac{1}{2} (\langle T(x), x \rangle + \overline{\langle T(x), x \rangle}) = \frac{1}{2} \cdot 2\operatorname{Re}(\langle T(x), x \rangle) = \operatorname{Re}(\langle T(x), x \rangle) \in \mathbb{R}$$

The proof is completed.

(b) Pick $x, y \in V$, we have $\langle T(x), x \rangle = 0$ and $\langle T(y), y \rangle = 0$. Also, as $x + y \in V$, it follows that

$$0_v = \langle T(x+y), x+y \rangle = \langle T(x) + T(y), x+y \rangle = \langle T(x), y \rangle + \langle T(y), x \rangle$$
(3)

Similarly, as $x + iy \in V$, we have

$$0 = \langle T(x+iy), x+iy \rangle = \langle T(x)+iT(y), x+iy \rangle = \overline{i} \langle T(x), y \rangle + i \langle T(y), x \rangle = -i \langle T(x), y \rangle + i \langle T(y), x \rangle$$

$$(4)$$

And hence (5): $0 = \langle T(x), y \rangle - \langle T(y), x \rangle$. Summing (3) and (5) yields $2\langle T(x), y \rangle = 0$ and so $\langle T(x), y \rangle = 0$. As this statement holds for all $x, y \in V$, we have $T = T_0$.

(c) Suppose $\langle T(x), x \rangle \in \mathbb{R}$ for all $x \in V$

$$\langle T(x), x \rangle = \langle x, T^*(x) \rangle = \overline{\langle T^*(x), x \rangle} \stackrel{(\star)}{=} \langle T^*(x), x \rangle \quad \Rightarrow \quad \langle (T - T^*)(x), x \rangle = 0$$

where (\star) holds because taking conjugation on real number does not change the value. As $\langle (T - T^*)(x), x \rangle = 0$ for all $x \in V$, it follows by (b) that $T - T^* = T_0$. Therefore, we have $T = T^*$