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Sec. 6.3

Q3(b).

Sol.

Q3(c).

Sol.

Q6.

Sol.

Q8.

For each of the following inner product spaces V and linear operators 7" on V', evaluate T
at the given vector in V.

V =C2% T(z1,2) = (221 + iz, (1 —i)z1), 2 = (3 — 1,1+ 2i)

Solution: Denote § = {(1,0),(0,1)} as the standard ordered basis for V' under field F' = C.
Then

[T]s = ( [T(1,0)]s [T<o71>]ﬁ)=<1fi é) = [T*]ﬁ:(mﬁ)*:< " 13)

—1

It follows that

@l =l = (2 ) ()= (531

Therefore, T*(x) = (5 + 14, —1 — 3i)

1
V= AR) with (.0) = [ SO0t () = §'+3F. 1) = 4=

Let 8 = {1,t} be the standard basis of V. Write T%(4 — 2t) = a + bt for some a,b € R. Then
for any g(t) = ¢+ dt € V with ¢,d € R, we have T'(g(t)) = d 4+ 3¢ + 3dt and

(d+3c+3dt,4 —2t) = (T'(g(t),4 —2t) = (g(t),T*(4 — 2t)) = (c+ dt,a + bt) .

Now (d+ 3c+3dt,4—2t) = 2(4)(d + 3¢) + (3d)(—2)% = 4d + 24c and (c+dt,a+bt) =
2ac + %bd. Since c¢,d are arbitrary, the coefficients of them on both sides of the equation
must equal respectively. Therefore 24 = 2a and %b = 4. Hence a = 12 and b = 6. So
T*(4 — 2t) = 12 + 6t.

Let T be a linear operator on an inner product space V. Let Uy =T +T* and Uy = TT™*.
Prove that Uy = Uf and Uz = Uj.

Ur=(T+T) =T+ (T*)* =T+ T = U,.
Up = (TT*)* = (T*)*T* = TT* = Us.

Let V be a finite-dimensional inner product space, and let 7" be a linear operator on V. Prove
that if T is invertible, then T* is invertible and (T*)~! = (T—1)*.



Sol. Suppose z € N(T™). Then

0=(T"Yz),T*(x)) = (TT (z),2) = (z,2).

Hence z = 0 and thus T* is an injective linear operator on V. So T* is invertible by finiteness
of dimension of V. Also we have

(o, (T () = (T (), T (1)L ()) = (TT (), (7)) = (=, (7)1 (1)
for all #,y € V. Therefore (T*)~! = (T~1)*.

Q9. Prove that if V = W @ W+ and T is the projection on W along W+, then T = T*. Hint:
Recall that N(T)) = W+. (For definitions, see the exercises of Sections 1.3 and 2.1.)

Sol. From the assumption V. = W @ W+, for all v,w € V, there exist unique v, w; € W and
Vo, Wo € W+ such that v = v; + v9 and w = wy + we. We check that

(T(v),w) = (v1,w; +we) = (v1,w1) + (v1,w2) = (v1,wy)

and so

(v, T(w)) = (T(w),v) = (w1,v1) = (vi,w1) = (T'(v),w).
Therefore T™ exists and T = T™.

Q13. Let T be a linear operator on a finite-dimensional inner product space V. Prove the following

results.
(a) N(T*T) = N(T). Deduce that rank(T*T) = rank(T).
(b) rank(7T) = rank(7™). Deduce from (a) that rank(77*) = rank(7T).

)
)

c) For any n x n matrix A. rank(A*A) = rank(AA*) = rank(A).
)

(
Sol. (a) It is clear that N(T") C N(T:T). Let x € N(T*T'). Then (T(z),T(x)) = (z,T*T(z)) =

I
(x, ﬁ} = 0. Hence T(x) = 0 and z € N(T'). It follows that
rank(7*T) = n — nullity(7*7T) = n — nullity(T") = rank(7T)

where n = dim(V).

(b) By Q12(b), R(T*) = N(T)*. Since V = N(T) @ N(T)* by Sec 6.2 Q13(d), we have
n = nullity(7") + dim(N(7")*) and

rank(7*) = dim(N(T)4) = n — nullity(T) = rank(7T).

(c) Note that L% = Lj-. Hence by applying part (a) and (b) with 7" = Ly, we have
rank(A*A) = rank(L =L 4) = rank(L% L) = rank(L 4) = rank(A). Similarly, rank(AA*) =
rank(A).

Q14. Let V be an inner product space, and let y,z € V. Define T : V. — V by T'(z) = (z,y) z
for all x € V. First prove that T is linear. Then show that T™ exists, and find an explicit
expression for it.



Sol.

Sec.

Sol.

For all z,w € V', we have

<T(x),w) = <(x,y> va) = <377y> <z,w) = <J}, <z,w>y> = <‘7:7 <w72> y> .
Note that w — (w, z) y is a linear operator on V' since
(w1 + cwz, 2) y = (w1, 2) + ¢ (w2, 2))y = (w1, 2) y + c (w2, 2) y

for all w1, wy € V and scalar ¢. Therefore this gives the adjoint of T

6.4

. For each linear operator T on an inner product space V, determine whether T is normal,

self-adjoint, or neither. If possible, produce an orthonormal basis of eigenvectors of T" for V'
and list the corresponding eigenvalues.

.V =C? and T is defined by T'(a,b) = (2a + ib,a + 2b)

Take 5 = {(1,0),(0,1)} as the ordered basis for V. Then

M= (15) = @l=my

Il
N
[ o
~.
[NCRE
~__

Therefore, we have

[T*T]ﬁz[T*]ﬁ[T]5:<_2i ;)(i ;>:<ZE2i QJL:)%)

and also

rr =il = (35 ) (2 )= (L0 BEY )~

As the matrix representation map is an isomorphism, we have T*T = TT*, i.e. T is normal.

Also, as [T'|g # [T*]5,T # T* and hence T is not self-adjoint operator. We then solve for the
9 _ .

eigenvalue of T" Consider fr(t) = det ([T]g — Al2) = det ( . A 5 i ) > =(A=2)2—-i=0.

Solving A — 2 = /i = :I:?(l + ). Then we have the eigenvalue given by \; =2 + g(l +1)
and Ay =2 — Y2(1 4 1)

For \y =2+ @(1 + 1), consider

e A R - () / _ Y
By, = N(T A1I2)—N< 2 2_\?(1+i)>_{t<;(12_i)>.t6(3}

Obviously we have H (72 11— z)) H =1

~

)2



Sol.

6.

For \p =2 — 72(1 + ). consider

B B B 2+ Y2(1 4 4) i B R NERY
E,,=N(T ,\212)_N< 21 2+\é§(1+i)>_{t< 2@ ).te(C}

Obviously we have H (—%(1 +1), g) H = 1 Therefore, we can take the orthonormal basis of

eigenvectors of T' for V' can be taken as

§ —2(1+1)
- )\ 2

. V= Py(R) and T is defined by T(f) = f’, where

1
(f.9) = /0 F(Hg(t)dt

Solution: Take oo = {1, x, xQ} as the orthogonal basis for V' and hence we can apply G-S pro-
cess to obtain the ordered orthonormal basis for V, 3 = {1,2v/3(t — 1/2),6V/5 (t* —t +1/6) }
Check by definition we can obtain

0 2v3 0 0 0 0
Te=[0 0 215 | = [My=()"=|2v3 0 0 |#[T]
0 0 0 0 2V15 0
Therefore, T is not an adjoint linear operator. Also, we have
0 23 0 0 0 0 12 0 0
[TT 5 =[T1s[T]={ 0 0 2V15 2v3 0 0 |=[ 0 60 0
0 0 0 0 2V15 0 0 0 0
and
0 0 0 0 23 0 0 0 0
[T*T)s = [T*5[Tls=| 2v3 0 0 0 0 2V15 | =[]0 12 0 | #[T"T],
0 2V15 0 0 0 0 0 0 60

Therefore, T*T # TT* and hence T is not normal operator. So, there exist no orthonormal
basis of eigenvectors of T for V.

Q: Let V be a complex inner product space, and let T" be a linear operator on V. Define

1 1
Ty=5(T+T7) and Tp= (T-T7)
1

(a) Prove that 77 and Ty are self-adjoint and that T' = Ty + iT5.

(b) Suppose also that T' = U; + iUz, where U; and U, are self-adjoint. Prove that
Uy =Ty and Uy =T5

(¢) Prove that T is normal if and only if 71Ty = T»T}.



Sol:

(a)

We have
T is self-adjoint. Also, we have

= (gw-m) =(-j@-1) = fa-Ty

i i2 1
= (T —-T)=—(T"-T)= —
( ) 2i( ) 2

T—-T=T
5 ( ) =Tz

so 15 is also self-adjoint. It is clear that
. 1 * 1 * 1 * 1 *
T1+ZT2:§(T+T)+7, Z(T_T) :§(T+T)+§(T—T):T

From assumption, we have T' = T} + i15 = U; 4+ iUy and hence
(Th —Up)+i(Ta —Uz) =0 (1)
As T1,T5,Uy, Us are self-adjoint, takeing adjoint operator on both sides
(T =U1)=i(Ta = Us2) = (Iy = U{) =i (T3 —U3) = (Th = U1) +i (T = U2))" =0 (2)
Adding (1) and (2) to use
2 -U)=0=T1=U,

Consider (1) — (2) : 2i (Ty — Uz) = 0 yields T5 = Us. The proof is completed.

(=) Suppose T is normal, then

T? + i\ Ty — i1 Ts + T3 = (Ty — iT3) (Th +iTy) = (T1 + iT3)" (T1 + iT3)
=TT =TT* = (T1 + ZTQ) (Tl + ZTQ)* = (T1 + ZTQ) (T1 — ZTQ)
=T —iTyTy + iTyTy + T3

By swapping the terms in the equality above yields 2i71T5 = 2i757T7 and hence 111> =

1.

(<) Suppose T1'Ty = Ty, we have

T*T = (T} +iTy)* (Ty + 1) = (Ty — iTy) (Ty + iTy) = T2 + T3 4+ iTy Ty — 15T,

= T2 + T3 + i1 — i Ty = (Ty + 1) (Ty — iTy) = (Ty +iTe) (Th +iTy)* = TT*

Hence T is normal operator.

: Let T be a linear operator on an inner product space V, and let W be a T-invariant

subspace of V. Prove the following results.

(a) If T is self-adjoint, then Ty is self-adjoint.

(b) W+ is T*-invariant.

(¢) If W is both T- and T™*-invariant, then (Tyw)* = (T™)w .

5



11.

Sol:

Sol:

Sol:

(d) If W is both T- and T™*-invariant and 7" is normal, then Ty is normal.
(a) Yu,v € W, since T is self-adjoint,

(Tw (u),v) = (T'(u),v) = (u, T(v)) = {u, Tw(v)),

whence Ty is self-adjoint.
(b) Fix w' € Wt and w € W. As W is T-invariant, T'(w) € W. Then

(w, T*(w")) = (T (w),w") = 0.

Therefore, T*(w) € W+. W is T*-invariant.
(¢) Fix w € W. We claim that (Tw)*(w) = (T*)w (w). If suffices to show that Vw' € W,
(W' (Tw)*(w)) = (W', (T*)w (w)). Indeed, Vo' € W,

(W', (Tw)"(w)) = (Tw (w),w) = (T(w), w) = (', T"(w)) = (W', (T")w (w)).

Therefore, (Tw)* = (T*)w.
Therefore, Ty is normal.

: Let T be a normal operator on a finite-dimensional inner product space V. Prove that

N(T) = N(T*) and R(T") = R(T™).

Fix v € N(T). If v = 0, then clearly v € N(T*). If v # 0, then v is an eigenvector of
T corresponding to eigenvalue 0 and by Theorem 6.15, v is also an eigenvector of T
corresponding to eigenvalue 0 = 0, implying that v € N(7™*). We have N(T') C N(T™).
Note that 7™ is also normal. Applying the above argument on T* yields N(7%) C
N((T*)*) = N(T'). Hence, N(T") = N(T™).

By Exercise 12 in Sec. 6.3, R(T*) = N(T)*+ = N(T*)* = R((T*)*) = R(T).

: Assume that T is a linear operator on a complex (not necessarily finite-dimensional)

inner product space V with an adjoint 7*. Prove the following results.

(a) If T is self-adjoint, then (T'(x),z) is real for all z € V.

(b) If T satisfies (T'(x),z) = 0 for all z € V, then T' = Ty. Hint: Replace = by = +y and
then by z 4 ¢y and expand the resulting inner products.

(c¢) If (T'(x),x) is real for all x € V| then T' = T*

As T is self-adjoint, i.e.

(T(z),2) = (2,T"(x)) = (T*(x), x) = (T(x), z)
Therefore, we have

(T'(x),z) = %((T(w),w) + (T (2),2)) = % 2Re((T'(z), 2)) = Re((T'(2),z)) € R

The proof is completed.



(b)

Pick z,y € V, we have (T'(z),z) = 0 and (T'(y),y) = 0. Also, as z+y € V, it follows that
Oy = (T(z+y),z+y) = (T(@) + T(y), z +y) = (T(x),y) + (T(y),z) (3)
Similarly, as z 4+ iy € V, we have

0 = (T(z+iy), a+iy) = (T(x)+iT(y), v+iy) = i{T(x),y)+i(T(y), ) = —i(T (), y>+i<(T)(y)7 x)
4

And hence (5): 0 = (T'(z),y) — (T'(y), ). Summing (3) and (5) yields 2(T'(z),y) = 0 and

so (T'(z),y) = 0. As this statement holds for all z,y € V, we have T = Tj.

Suppose (T'(z),z) e Rforall z € V

(T(),2) = (2, T"(2)) = T (@),2) 2 (T*(@),a) = (T —T")(x).a) =0

where (%) holds because taking conjugation on real number does not change the value.
As((T —T*) (z),z) = 0 for all x € V, it follows by (b) that T — T™* = Tj. Therefore, we
have T'=T*



