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Sec. 6.3

Q3(b). For each of the following inner product spaces V and linear operators T on V , evaluate T ∗

at the given vector in V .

V = C2, T (z1, z2) = (2z1 + iz2, (1− i)z1) , x = (3− i, 1 + 2i)

Sol. Solution: Denote β = {(1, 0), (0, 1)} as the standard ordered basis for V under field F = C.

Then

[T ]β =
(

[T (1, 0)]β [T (0, 1)]β
)

=

(
2 i

1− i 0

)
⇒ [T ∗]β = ([T ]β)∗ =

(
2 1 + i

−i 0

)
It follows that

[T ∗(x)]β = [T ∗]β [x]β =

(
2 1 + i

−i 0

)(
3− i
1 + 2i

)
=

(
5 + i

−1− 3i

)
Therefore, T ∗(x) = (5 + i,−1− 3i)

Q3(c). V = P1(R) with 〈f, g〉 =

∫ 1

−1
f(t)g(t)dt, T (f) = f ′ + 3f . f(t) = 4− 2t.

Sol. Let β = {1, t} be the standard basis of V . Write T ∗(4− 2t) = a+ bt for some a, b ∈ R. Then

for any g(t) = c+ dt ∈ V with c, d ∈ R, we have T (g(t)) = d+ 3c+ 3dt and

〈d+ 3c+ 3dt, 4− 2t〉 = 〈T (g(t), 4− 2t〉 = 〈g(t), T ∗(4− 2t)〉 = 〈c+ dt, a+ bt〉 .

Now 〈d+ 3c+ 3dt, 4− 2t〉 = 2(4)(d + 3c) + (3d)(−2)23 = 4d + 24c and 〈c+ dt, a+ bt〉 =

2ac + 2
3bd. Since c, d are arbitrary, the coefficients of them on both sides of the equation

must equal respectively. Therefore 24 = 2a and 2
3b = 4. Hence a = 12 and b = 6. So

T ∗(4− 2t) = 12 + 6t.

Q6. Let T be a linear operator on an inner product space V . Let U1 = T + T ∗ and U2 = TT ∗.

Prove that U1 = U∗1 and U2 = U∗2 .

Sol.

U∗1 = (T + T ∗)∗ = T ∗ + (T ∗)∗ = T ∗ + T = U1.

U∗2 = (TT ∗)∗ = (T ∗)∗T ∗ = TT ∗ = U2.

Q8. Let V be a finite-dimensional inner product space, and let T be a linear operator on V . Prove

that if T is invertible, then T ∗ is invertible and (T ∗)−1 = (T−1)∗.
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Sol. Suppose x ∈ N(T ∗). Then

0 =
〈
T−1(x), T ∗(x)

〉
=
〈
TT−1(x), x

〉
= 〈x, x〉 .

Hence x =
⇀
0 and thus T ∗ is an injective linear operator on V . So T ∗ is invertible by finiteness

of dimension of V . Also we have〈
x, (T−1)∗(y)

〉
=
〈
T−1(x), T ∗(T ∗)−1(y)

〉
=
〈
TT−1(x), (T ∗)−1(y)

〉
=
〈
x, (T ∗)−1(y)

〉
for all x, y ∈ V . Therefore (T ∗)−1 = (T−1)∗.

Q9. Prove that if V = W ⊕W⊥ and T is the projection on W along W⊥, then T = T ∗. Hint:

Recall that N(T ) = W⊥. (For definitions, see the exercises of Sections 1.3 and 2.1.)

Sol. From the assumption V = W ⊕W⊥, for all v, w ∈ V , there exist unique v1, w1 ∈ W and

v2, w2 ∈W⊥ such that v = v1 + v2 and w = w1 + w2. We check that

〈T (v), w〉 = 〈v1, w1 + w2〉 = 〈v1, w1〉+ 〈v1, w2〉 = 〈v1, w1〉

and so

〈v, T (w)〉 = 〈T (w), v〉 = 〈w1, v1〉 = 〈v1, w1〉 = 〈T (v), w〉 .

Therefore T ∗ exists and T = T ∗.

Q13. Let T be a linear operator on a finite-dimensional inner product space V . Prove the following

results.

(a) N(T ∗T ) = N(T ). Deduce that rank(T ∗T ) = rank(T ).

(b) rank(T ) = rank(T ∗). Deduce from (a) that rank(TT ∗) = rank(T ).

(c) For any n× n matrix A. rank(A∗A) = rank(AA∗) = rank(A).

Sol. (a) It is clear that N(T ) ⊂ N(T ∗T ). Let x ∈ N(T ∗T ). Then 〈T (x), T (x)〉 = 〈x, T ∗T (x)〉 =

〈x,⇀0 〉 = 0. Hence T (x) =
⇀
0 and x ∈ N(T ). It follows that

rank(T ∗T ) = n− nullity(T ∗T ) = n− nullity(T ) = rank(T )

where n = dim(V ).

(b) By Q12(b), R(T ∗) = N(T )⊥. Since V = N(T ) ⊕ N(T )⊥ by Sec 6.2 Q13(d), we have

n = nullity(T ) + dim(N(T )⊥) and

rank(T ∗) = dim(N(T )⊥) = n− nullity(T ) = rank(T ).

(c) Note that L∗A = LA∗ . Hence by applying part (a) and (b) with T = LA, we have

rank(A∗A) = rank(LA∗LA) = rank(L∗ALA) = rank(LA) = rank(A). Similarly, rank(AA∗) =

rank(A).

Q14. Let V be an inner product space, and let y, z ∈ V . Define T : V → V by T (x) = 〈x, y〉 z
for all x ∈ V . First prove that T is linear. Then show that T ∗ exists, and find an explicit

expression for it.
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Sol. For all x,w ∈ V , we have

〈T (x), w〉 = 〈〈x, y〉 z, w〉 = 〈x, y〉 〈z, w〉 =
〈
x, 〈z, w〉y

〉
= 〈x, 〈w, z〉 y〉 .

Note that w 7→ 〈w, z〉 y is a linear operator on V since

〈w1 + cw2, z〉 y = (〈w1, z〉+ c 〈w2, z〉)y = 〈w1, z〉 y + c 〈w2, z〉 y

for all w1, w2 ∈ V and scalar c. Therefore this gives the adjoint of T .

Sec. 6.4

2. For each linear operator T on an inner product space V, determine whether T is normal,

self-adjoint, or neither. If possible, produce an orthonormal basis of eigenvectors of T for V

and list the corresponding eigenvalues.

(c). V = C2 and T is defined by T (a, b) = (2a+ ib, a+ 2b)

Sol. Take β = {(1, 0), (0, 1)} as the ordered basis for V . Then

[T ]β =

(
2 i

1 2

)
⇒ [T ∗]β = ([T ]β)∗ =

(
2 1

−i 2

)
Therefore, we have

[T ∗T ]β = [T ∗]β [T ]β =

(
2 1

−i 2

)(
2 i

1 2

)
=

(
5 2 + 2i

2− 2i 5

)
and also

[TT ∗]β = [T ]β [T ∗]β =

(
2 i

1 2

)(
2 1

−i 2

)
=

(
5 2 + 2i

2− 2i 5

)
= [T ∗T ]β

As the matrix representation map is an isomorphism, we have T ∗T = TT ∗, i.e. T is normal.

Also, as [T ]β 6= [T ∗]β , T 6= T ∗ and hence T is not self-adjoint operator. We then solve for the

eigenvalue of T Consider fT (t) = det ([T ]β − λI2) = det

(
2− λ i

1 2− λ

)
= (λ−2)2− i = 0.

Solving λ− 2 =
√
i = ±

√
2
2 (1 + i). Then we have the eigenvalue given by λ1 = 2 +

√
2
2 (1 + i)

and λ2 = 2−
√
2
2 (1 + i)

For λ1 = 2 +
√
2
2 (1 + i), consider

Eλ1 = N (T − λ1I2) = N

(
2−

√
2
2 (1 + i) i

1 2−
√
2
2 (1 + i)

)
=

{
t

( √
2
2

1
2(1− i)

)
: t ∈ C

}

Obviously we have
∥∥∥(√22 , 12(1− i)

)∥∥∥ = 1
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For λ2 = 2−
√
2
2 (1 + i). consider

Eλ2 = N (T − λ2I2) = N

(
2 +

√
2
2 (1 + i) i

1 2 +
√
2
2 (1 + i)

)
=

{
t

(
−1

2(1 + i)√
2
2

)
: t ∈ C

}

Obviously we have
∥∥∥(−1

2(1 + i),
√
2
2

)∥∥∥ = 1 Therefore, we can take the orthonormal basis of

eigenvectors of T for V can be taken as{( √
2
2

1
2(1− i)

)
,

(
−1

2(1 + i)√
2
2

)}

(d). V = P2(R) and T is defined by T (f) = f ′, where

〈f, g〉 =

∫ 1

0
f(t)g(t)dt

Sol. Solution: Take α =
{

1, x, x2
}

as the orthogonal basis for V and hence we can apply G-S pro-

cess to obtain the ordered orthonormal basis for V, β =
{

1, 2
√

3(t− 1/2), 6
√

5
(
t2 − t+ 1/6

)}
Check by definition we can obtain

[T ]β =

 0 2
√

3 0

0 0 2
√

15

0 0 0

 ⇒ [T ∗]β = ([Tβ])∗ =

 0 0 0

2
√

3 0 0

0 2
√

15 0

 6= [T ]β

Therefore, T is not an adjoint linear operator. Also, we have

[TT ∗]β = [T ]β [T ∗]β =

 0 2
√

3 0

0 0 2
√

15

0 0 0

 0 0 0

2
√

3 0 0

0 2
√

15 0

 =

 12 0 0

0 60 0

0 0 0


and

[T ∗T ]β = [T ∗]β [T ]β =

 0 0 0

2
√

3 0 0

0 2
√

15 0

 0 2
√

3 0

0 0 2
√

15

0 0 0

 =

 0 0 0

0 12 0

0 0 60

 6= [T ∗T ]β

Therefore, T ∗T 6= TT ∗ and hence T is not normal operator. So, there exist no orthonormal

basis of eigenvectors of T for V .

6. Q: Let V be a complex inner product space, and let T be a linear operator on V. Define

T1 =
1

2
(T + T ∗) and T2 =

1

2i
(T − T ∗)

(a) Prove that T1 and T2 are self-adjoint and that T = T1 + iT2.

(b) Suppose also that T = U1 + iU2, where U1 and U2 are self-adjoint. Prove that

U1 = T1 and U2 = T2

(c) Prove that T is normal if and only if T1T2 = T2T1.
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Sol: (a) We have

T ∗1 =

(
1

2
(T + T ∗)

)∗
=

(
1

2

)∗
(T ∗ + (T ∗)∗) =

1

2
(T ∗ + T ) =

1

2
(T + T ∗) = T1

T1 is self-adjoint. Also, we have

T ∗2 =

(
1

2i
(T − T ∗)

)∗
=

(
− i

2
(T − T ∗)

)∗
=
i

2
(T − T ∗)∗

=
i

2
(T ∗ − T ) =

i2

2i
(T ∗ − T ) =

1

2i
(T − T ∗) = T2

so T2 is also self-adjoint. It is clear that

T1 + iT2 =
1

2
(T + T ∗) + i

[
1

2i
(T − T ∗)

]
=

1

2
(T + T ∗) +

1

2
(T − T ∗) = T

(b) From assumption, we have T = T1 + iT2 = U1 + iU2 and hence

(T1 − U1) + i (T2 − U2) = 0 (1)

As T1, T2, U1, U2 are self-adjoint, takeing adjoint operator on both sides

(T1 − U1)− i (T2 − U2) = (T ∗1 − U∗1 )− i (T ∗2 − U∗2 ) = ((T1 − U1) + i (T2 − U2))
∗ = 0 (2)

Adding (1) and (2) to use

2 (T1 − U1) = 0⇒ T1 = U1

Consider (1)− (2) : 2i (T2 − U2) = 0 yields T2 = U2. The proof is completed.

(c) (⇒) Suppose T is normal, then

T 2
1 + iT1T2 − iT2T2 + T 2

2 = (T1 − iT2) (T1 + iT2) = (T1 + iT2)
∗ (T1 + iT2)

= T ∗T = TT ∗ = (T1 + iT2) (T1 + iT2)
∗ = (T1 + iT2) (T1 − iT2)

= T 2
1 − iT1T2 + iT2T1 + T 2

2

By swapping the terms in the equality above yields 2iT1T2 = 2iT2T1 and hence T1T2 =

T2T1.

(⇐) Suppose T1T2 = T2T1, we have

T ∗T = (T1 + iT2)
∗ (T1 + iT2) = (T1 − iT2) (T1 + iT2) = T 2

1 + T 2
2 + iT1T2 − iT2T1

= T 2
1 + T 2

2 + iT2T1 − iT1T2 = (T1 + iT2) (T1 − iT2) = (T1 + iT2) (T1 + iT2)
∗ = TT ∗

Hence T is normal operator.

7. Q: Let T be a linear operator on an inner product space V , and let W be a T -invariant

subspace of V . Prove the following results.

(a) If T is self-adjoint, then TW is self-adjoint.

(b) W⊥ is T ∗-invariant.

(c) If W is both T - and T ∗-invariant, then (TW )∗ = (T ∗)W .
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(d) If W is both T - and T ∗-invariant and T is normal, then TW is normal.

Sol: (a) ∀u, v ∈W , since T is self-adjoint,

〈TW (u), v〉 = 〈T (u), v〉 = 〈u, T (v)〉 = 〈u, TW (v)〉,

whence TW is self-adjoint.

(b) Fix w′ ∈W⊥ and w ∈W . As W is T -invariant, T (w) ∈W . Then

〈w, T ∗(w′)〉 = 〈T (w), w′〉 = 0.

Therefore, T ∗(w) ∈W⊥. W⊥ is T ∗-invariant.

(c) Fix w ∈W . We claim that (TW )∗(w) = (T ∗)W (w). If suffices to show that ∀w′ ∈W ,

〈w′, (TW )∗(w)〉 = 〈w′, (T ∗)W (w)〉. Indeed, ∀w′ ∈W ,

〈w′, (TW )∗(w)〉 = 〈TW (w′), w〉 = 〈T (w′), w〉 = 〈w′, T ∗(w)〉 = 〈w′, (T ∗)W (w)〉.

Therefore, (TW )∗ = (T ∗)W .

(d) We have TW (TW )∗ = TW (T ∗)W = (TT ∗)W = (T ∗T )W = (T ∗)WTW = (TW )∗TW .

Therefore, TW is normal.

9. Q: Let T be a normal operator on a finite-dimensional inner product space V . Prove that

N(T ) = N(T ∗) and R(T ) = R(T ∗).

Sol: Fix v ∈ N(T ). If v = ~0, then clearly v ∈ N(T ∗). If v 6= ~0, then v is an eigenvector of

T corresponding to eigenvalue 0 and by Theorem 6.15, v is also an eigenvector of T ∗

corresponding to eigenvalue 0 = 0, implying that v ∈ N(T ∗). We have N(T ) ⊂ N(T ∗).

Note that T ∗ is also normal. Applying the above argument on T ∗ yields N(T ∗) ⊂
N((T ∗)∗) = N(T ). Hence, N(T ) = N(T ∗).

By Exercise 12 in Sec. 6.3, R(T ∗) = N(T )⊥ = N(T ∗)⊥ = R((T ∗)∗) = R(T ).

11. Q: Assume that T is a linear operator on a complex (not necessarily finite-dimensional)

inner product space V with an adjoint T ∗. Prove the following results.

(a) If T is self-adjoint, then 〈T (x), x〉 is real for all x ∈ V .

(b) If T satisfies 〈T (x), x〉 = 0 for all x ∈ V, then T = T0. Hint: Replace x by x+ y and

then by x+ iy and expand the resulting inner products.

(c) If 〈T (x), x〉 is real for all x ∈ V, then T = T ∗

Sol: (a) As T is self-adjoint, i.e.

〈T (x), x〉 = 〈x, T ∗(x)〉 = 〈T ∗(x), x〉 = 〈T (x), x〉

Therefore, we have

〈T (x), x〉 =
1

2
(〈T (x), x〉+ 〈T (x), x〉) =

1

2
· 2 Re(〈T (x), x〉) = Re(〈T (x), x〉) ∈ R

The proof is completed.
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(b) Pick x, y ∈ V, we have 〈T (x), x〉 = 0 and 〈T (y), y〉 = 0. Also, as x+y ∈ V, it follows that

0v = 〈T (x+ y), x+ y〉 = 〈T (x) + T (y), x+ y〉 = 〈T (x), y〉+ 〈T (y), x〉 (3)

Similarly, as x+ iy ∈ V, we have

0 = 〈T (x+iy), x+iy〉 = 〈T (x)+iT (y), x+iy〉 = ī〈T (x), y〉+i〈T (y), x〉 = −i〈T (x), y〉+i〈T (y), x〉
(4)

And hence (5): 0 = 〈T (x), y〉− 〈T (y), x〉. Summing (3) and (5) yields 2〈T (x), y〉 = 0 and

so 〈T (x), y〉 = 0. As this statement holds for all x, y ∈ V, we have T = T0.

(c) Suppose 〈T (x), x〉 ∈ R for all x ∈ V

〈T (x), x〉 = 〈x, T ∗(x)〉 = 〈T ∗(x), x〉 (?)= 〈T ∗(x), x〉 ⇒ 〈(T − T ∗) (x), x〉 = 0

where (?) holds because taking conjugation on real number does not change the value.

As 〈(T − T ∗) (x), x〉 = 0 for all x ∈ V, it follows by (b) that T − T ∗ = T0. Therefore, we

have T = T ∗
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